
On the introductory notes on Artin’s Conjecture

The purpose of this note is to make the surveys [5] and [6] more accessible to bachelor students. We
provide some further preliminaries and some exercises. We also present the calculations which lead to
the density appearing in Hooley’s formulas and a proof for the corollaries of the result by Heath-Brown.
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1. What we are speaking about

One of the most famous open conjectures in number theory is Artin’s primitive root conjecture, which
is due to Emil Artin and dates back to 1927.

Let p denote a prime number and consider the reduction of the integers modulo p, so the ring homo-
morphism

Z→ Z/pZ
which sends any integer to its residue class modulo p.
Let a be an integer not divisible by p. Then Fermat’s Little Theorem tells us that

ap−1 ≡ 1 (mod p) .

This means that the integer ap−1 − 1 is divisible by p. Do there exist infinitely many primes p such
that the smallest n such that

an ≡ 1 (mod p)

is in fact p− 1?
The classical version of Artin’s primitive root conjecture states that the answer to this question is
affirmative, provided that a is not a perfect square or −1.

2. The cyclicity of the group (Z/pZ)∗

The set of non-zero residue classes modulo p is a group for the multiplication induced by Z/pZ. It is
denoted by (Z/pZ)∗. I outline two proofs of the fact that the group (Z/pZ)∗ is cyclic.

Lemma 2.1. A polynomial of degree d with coefficients in a field can have at most d distinct solutions.

Proof. Let α be a solution for f(x). Then we can write f(x) = g(x)(x− α) + r by euclidean division
and the constant r is 0 (evaluate f(α)). So f(x) = g(x)(x− α). A solution β of f is such that either
g(β) = 0 or (β − α) = 0. So if β 6= α then β is a solution of g and (by induction on the degree) there
are at most d− 1 solutions for g. �

Lemma 2.2. For the Euler-φ function, the following relation holds for every n ≥ 1:

n =
∑
d|n

φ(n)

Proof. One can prove the formula by induction on the number of prime factors of n. See [3, Proposition
2.2.4] �

For any group, the order of the sum of two elements clearly divides the least common multiple of the
orders of the elements.

Lemma 2.3. In a group, if two elements have orders which are coprime, then the order of the sum is
exactly the product of the orders.
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Proof. Suppose that a and b have order n and m respectively and (n,m) = 1. Let d | n, d 6= 1.
Then nm

d (a ⊕ b) = n
d (a) 6= 0 hence the order does not divide nm

d hence the order is a multiple of n
(analogously for m). �

We know that the order of the group (Z/pZ)∗ is p − 1 hence it suffices to show that there is at least
one element of order exactly p− 1.

First proof
We first prove that there are at most φ(d) elements of order d. Suppose that there is an element a
of order d. Then the powers a, a2 . . . , ad = 1 are all distinct. They are d distinct solutions of the
polynomial xd − 1 so they are all the solutions of that polynomial. Thus every element which has
order d, being a solution of xd − 1, is a power of a. The order of the power of an element is given by
the formula:

ord(ah) =
ord(a)

(h, ord (a))

Then the powers of a whose order is d correspond to the integers 0 < h < d that are coprime to d:
they are exactly φ(d). So we have shown that if there is an element of order d, there are exactly φ(d)
such elements.
We have a set of p− 1 elements, which is the disjoint union, for d | p− 1, of subsets of order at most
φ(d). Since

p− 1 =
∑
d|p−1

φ(d)

then it must be that every such subset has order φ(d). In particular, we have proven that for every
d | p− 1 (including p− 1, which is what we need) there are exactly φ(d) elements of order d.

Second proof
Write p− 1 as product of prime powers peii . By Lemma 2.3, it suffices to find, for every i, an element
which has order a multiple of peii (notice that a power of it will have order exactly peii ). Without loss
of generality, suppose that no element has order a multiple of pe11 , equivalently that every element has

order dividing p−1
p1

. Then there would be p − 1 distinct solutions of the polynomial x
p−1
p1 − 1, which

has degree strictly smaller than p− 1. Contradiction.

3. Exercises on primitive roots

(1) Prove that (2 mod 29) is a primitive root.
Hint: minimize your calculations by thinking of the group structure.

(2) List all the primitive roots modulo 19.
Hint: minimize your calculations by thinking of the group structure; you will possibly en-

counter the same elements when you do the calculations, so keep track of the informations you
have already found.

(3) Prove that (a mod p) and its inverse [(b mod p) such that (ab mod p)= (1 mod p)] have the
same order.

(4) Let q be a prime and define ordq(a mod p) as the highest power of q dividing the order of (a
mod p). Show that if ordq(a mod p)>ordq(b mod p) then ordq(ab mod p)=ordq(a mod p).

(5) Let p be an odd prime.
Prove that (a mod p) and (-a mod p) have the same order if 4 divides the order of (a mod p).
Prove that (-a mod p) has order twice the order of (a mod p), if the order of (a mod p) is odd.
Prove that the order of (-a mod p) is half of the order of (a mod p), if the order of (a mod p)
is even but not divisible by 4.

Hint: Use exercise 4. Show that ordq(a mod p)=ordq(-a mod p) for every odd prime q hence
restrict your attention to ord2. For the last assertion, consider that if you raise (a mod p) to the
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odd part of its order, you must necessarily get (-1 mod p) [which is the only element of order 2].

(6) Let G be a finite group and let g be an element of G. Show that the order of n · g is ord(g)
(ord(g),n) .

Hint: write n = (ord(g), n) · n′, with (ord(g), n′)=1.

(7) Let d be a divisor of p− 1. Let (g mod p) be a primitive root. Show that (gp−1/d mod p) has
order exactly d.

Hint: use exercise 6.

(8) Let p be an odd prime. Show that (a mod p) is a primitive root modulo p if and only if (ap−1/d

mod p) is not (1 mod p), for every prime divisor d of p− 1.
Hint: use exercise 7.

(9) Show that the d-th powers [(a mod p)=(bd mod p) for some b] form a subgroup. Show that if
d | (p− 1) then the order of this subgroup is (p− 1)/d. Show that if (p− 1, d) = 1 then every
element is a d-th power.

Hint: Let (g mod p) be a primitive root. Then show that (a mod p) is a d-th power if and
only if one can write (a mod p)=(gdk mod p) for some integer k. For the last assertion, use

the fact that d has an inverse d′ modulo (p− 1), hence (gk mod p)=(gd(d
′k) mod p) for every

integer k.

(10) Show that there are φ(p − 1) primitive roots. Let a be as in Artin’s conjecture, and not a
power. Prove that if p > 3 the expected probability that (a mod p) is a primitive root is at
most 1 − 1√

p−1 . Check that this is the expected probability if p − 1 = q2, where q is prime.

[For p=2,3 the values are 1 and 1/2 respectively.]

(11) Explain why we exclude 0, ±1 and squares from Artin’s conjecture. Explain also why a priori
we do not exclude other powers.

Hint: 2 divides p − 1 for every odd prime; see the hint of exercise 9. Recall Dirichlet’s
theorem on primes in arithmetic progression to argument that there are ‘many’ primes for
which p− 1 is not divisible by some fixed odd number.

4. The modified density of Hooley’s formulas

In this section, I show how one arrives from Artin’s heuristics to the formula of the density which
appears in Hooley’s result. This calculation is taken from [2, Section 6]. Following Artin’s heuristics,
to calculate the density we simply have to evaluate:∑

n squarefree

µ(n)

[Kn : Q]

where µ is the Moebius function and Kn is the compositum of Q(ζq, a
1/q) for every prime number q

which divides n. So we are taking a sum of the inverses of the degrees over Q of the number fields Kn

(with a sign ± according to the Moebius function).

Euler products. Let a(n) be a function defined over the natural numbers (n > 0) which is multi-
plicative, which means a(1) = 1 and a(mn) = a(m)a(n) whenever m,n are coprime. Then the Euler
product formula says: ∑

n

a(n) =
∏
p

(
1 + a(p) + a(p2) + · · ·

)
If a(n) = 0 for n not squarefree then the following simplified version clearly holds:∑

n squarefree

a(n) =
∑
n

a(n) =
∏
p

(
1 + a(p) + a(p2) + · · ·

)
=
∏
p

(
1 + a(p)

)
The case of linear disjoint extensions. Suppose that we are in the case where the extensions Q(ζq, a

1/q)
are linearly disjoint for every prime number q (so, including q = 2). This means that a = bc2 for some
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integers b, c and that b 6≡ 1 (mod 4). We are then in the case where

[Kn : Q] =
nφ(n)

(h, n)

where h is the biggest integer such that a has an h-th root in the integers. The requested density is
then ∑

n squarefree

µ(n)

[Kn : Q]
=
∏
p

(
1 +

µ(p)

[Kp : Q]

)
=
∏
p|h

(
1− p

p(p− 1)

)∏
p-h

(
1− 1

p(p− 1)

)
= A(h)

The number A(h) is obviously a rational multiple of Artin’s constant

A =
∏
p

(
1− 1

p(p− 1)

)
The case of non-linear disjoint extensions. Suppose that a = bc2 for some integers b, c and that
b ≡ 1 (mod 4). In particular, b is odd. Then

[Kn : Q] =


nφ(n)
2(h,n) if n is even and b | n

nφ(n)
(h,n) otherwise

where h is the biggest integer such that a has an h-th root in the integers. Recall that h is odd since
we exclude squares from Artin’s conjecture.
We have:

∑
n

µ(n)

[Kn : Q]
=

∑
n6≡0(mod 2|b|)

µ(n)(h, n)

nφ(n)
+ 2 ·

∑
n≡0(mod 2|b|)

µ(n)(h, n)

nφ(n)
= A(h) +

∑
n≡0(mod 2|b|)

µ(n)(h, n)

nφ(n)

If m is squarefree and m ≡ 0 (mod 2|b|) we can write m = 2|b|n with n coprime to 2|b|. Then we have:

∑
n≡0(2|b|)

µ(n)(h, n)

nφ(n)
=

∑
n:(n,2|b|)=1

µ(2|b|n)(h, 2|b|n)

(2|b|n)φ(2|b|n)
=
µ(2|b|)(h, 2|b|)
(2|b|)φ(2|b|)

·
∑

n:(n,2|b|)=1

µ(n)(h, n)

nφ(n)

Let µ̃(n) be equal to µ(n) whenever (n, 2|b|) = 1 and equal to 0 otherwise. By taking the Euler
product we get:

∑
n

µ̃(n)(h, n)

nφ(n)
=
∏
p

(
1 +

µ̃(p)(h, p)

pφ(p)

)
=

∏
p: p-(2|b|)

(
1 +

µ(p)(h, p)

pφ(p)

)
=

∏
p: p-(2|b|)

(
1− (h, p)

pφ(p)

)
=

A(h) ·
∏

p: p|(2|b|)

(
1− (h, p)

pφ(p)

)−1
= A(h) ·

∏
p: p|(2|b|)

pφ(p)

pφ(p)− (h, p)

Putting things together:

∑
n

µ(n)

[Kn : Q]
= A(h)

[
1 +

µ(2|b|)(h, 2|b|)
2|b|φ(2|b|)

·
∏

p: p|(2|b|)

pφ(p)

pφ(p)− (h, p)

]
=

= A(h)
[
1− µ(|b|)(h, 2|b|) ·

∏
p: p|(2|b|)

1

pφ(p)− (h, p)

]
= A(h)

[
1− µ(|b|) ·

∏
p: p|(2|b|)

(h, p)

pφ(p)− (h, p)

]
=

= A(h)
[
1− µ(|b|) ·

∏
p: p|b;p|h

1

φ(p)− 1
·
∏

p: p|b;p-h

1

pφ(p)− 1

]
= A(h)

[
1− µ(|b|) ·

∏
p|b

1

[Kp : Q]− 1

]
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5. Corollaries of the result by Heath-Brown

An n-tuple of integer numbers x1, . . . , xn is said to be multiplicative dependent (the numbers are then
called multiplicative dependent) if there exist a1, . . . , an integers, not all zero, such that

∏n
1 x

ai
i = 1.

Multiplicative independent means not multiplicatively dependent in the sense above.

Heath-Brown proved in 1967 ([1]) the following result:

Theorem 5.1. If q, r, s are three nonzero multiplicatively independent integers such that none of

q, r, s,−3qr,−3qs,−3rs, qrs

is a square, then there are infinitely many prime numbers p for which at least one between q, r, s is
a primitive root modulo p.

We deduce the following:

Corollary 5.2. Consider the classical version of Artin’s conjecture (we look for an infinite set of
primes p):

(1) There are at most two prime numbers for which Artin’s conjecture fails.
(2) There are at most three positive squarefree numbers ( 6= 1) for which Artin’s conjecture fails.

Lemma 5.3. Let x, y, z be three distinct positive squarefree integers (6= 1) and suppose that xaybzc = 1
for some integers a, b, c. Then (up to a reordering) we have z = xy and (x, y) = 1.

Proof. It is easy to see that one or two distinct positive squarefree integers (6= 1) are always multi-
plicative independent. Then a, b, c are all non-zero. Since x, y, z are integers, a, b, c cannot be all > 0
or all < 0. So, without loss of generality, we can write xayb = zc for some a, b, c > 0.
Since x and y are distinct squarefree integers there exists p prime (w.l.o.g.) dividing x but not y.

Hence c must divide a (the left-hand side is a c-th power). So we have xca
′
yb = zc. By comparing the

exponents in the prime factorisations, c | b.
Then we have xa

′
yb
′

= z [we could have xa
′
ζnc · yb

′
ζmc = z but since x, y, z are positive integers it must

be that ζnc ζ
m
c is also a positive integer, hence it is 1]. So we have xa

′
yb
′

= z. Since a′ > 0, b′ > 0 and
z is square-free it follows that a′ = b′ = 1 and (x, y) = 1. So z = xy and (x, y) = 1. �

Proof of Corollary 5.2. (1) Suppose that there are three distinct prime numbers q, r, s for which
Artin’s conjecture fails. They are multiplicative independent and qrs is not a square. Since negative
numbers are not squares, we apply the result by Heath-Brown and deduce a contradiction.
(2) It suffices to show that in every set of four distinct positive squarefree integers ( 6= 1), there is
at least one which satisfies Artin’s conjecture. We will show that for every four distinct positive
squarefree integers (6= 1), there are three of them which are multiplicatively independent and are such
that the product of them is not a square. It is then clear (since negative integers are never squares)
that the assumptions of the result of Heath-Brown hold. Hence at least one of the four numbers
satisfies Artin’s conjecture.
Let {x, y, z, w} be our set of four distinct positive squarefree integers (6= 1). First case: there are three
elements in our set which are dependent. So w.l.o.g. we have z = xy and (x, y) = 1. Since w 6= xy
and (x, y) = 1 [hence x - y or viceversa] Lemma 5.3 implies that {x, y, w} are independent. We have
that xyw is not a square: since (x, y) = 1 and w is squarefree, that would imply w = xy.
Second case: no three elements in our set are dependent. What if xyz is a square? Let δ = (x, y) so
that x = δx′ and y = δy′. Because z is square-free then that would imply z = x′y′. Since w 6= z we
then conclude that xyw is not a square. �

In particular, Artin’s conjecture is true for at least one in between 2,3,5.

6. Datas

I collect some datas which are available at The On-Line Encyclopedia of Integer Sequences (OEIS).

Datas for (2 mod p):
The primes p up to 1.000 for which (2 mod p) is a primitive root, see:
http://oeis.org/classic/A001122
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(PARI) forprime(p=3, 1000, if(znprimroot(p)==2, print(p))).

3,5,11,13,19,29,37,53,59,61,67,83,101,107,131, 139,149,163,173,179,181,197,211,227,269,293,317,
347,349,373,379,389,419,421,443,461,467,491,509, 523,541,547,557,563,587,613,619,653,659,661,677,
701,709,757,773,787,797

Let a(n) be the n-th term of the sequence above. There is a graphic for (n, a(n)) at the page:
http://oeis.org/classic/table?a=1122&fmt=5
This graphic visually shows the density of the set of primes p such that (2 mod p) is a primitive root.

Artin’s constant:
You can look at the first cyphers of the decimal expansion of Artin’s constant (with graphic), by
following the links at the page: http://oeis.org/classic/A005596

Datas for other elements:
Unfortunately, the program

(PARI) forprime(p=3, 1000, if(znprimroot(p)==3, print(p))).

seems to print the primes for which 3 is the smallest primitive root, so it excludes those for which
both 2 and 3 are primitive roots. See http://oeis.org/classic/A001123
But for any a we can write:

(PARI) if(znorder(Mod(a,p))==p-1, print(p)).

For 6, see: http://oeis.org/classic/A019336
You get the list of primes for which 6 is a primitive root:

(MATEMATICA) pr=6; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]

By replacing 6 with 8, see: http://oeis.org/classic/A019338
The same program line command with (MATEMATICA), by replacing 6 by 3, should give you the
primes (between the first 200 primes) such that (3 mod p) is a primitive root.

Possible computational exercises:

• Study the reductions modulo the first rational primes (200 primes, or primes up to 1000)
and compare the (approximated) densities for a=2 with the approximated Artin’s constant
[decimal expansion].
• Study the reductions modulo the first rational primes (200 primes, or primes up to 1000) and

compare the (approximated) densities for a=8 with the modified Artin’s constant A(3) [you
can deduce the decimal expansion of A(3) from that of A].
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