Arithmetic billiards in dimension n

We assume that is the reader is familiar with the setting of the two-dimensional arithmetic billiards.

Theorem 1. Let us call $x_1, x_2, ..., x_n$, the (positive and integer) variables, and let $a_1, a_2, ..., a_n$, their maximal value. Then the total length of the path in a n-dimensional cuboid is equal to $lcm(a_1, a_2, ..., a_n)$.

Proof. First of all, when the path hits one corner, the coordinates of that corner must be:

 $\begin{cases} x_1 = 0 \text{ or } x_1 = a_1 \\ x_2 = 0 \text{ or } x_2 = a_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ x_n = 0 \text{ or } x_n = a_n \end{cases}$

Let us now call $c_1, c_2, ..., c_n$, the coordinates of the hit corner. Then we know that $c_1, c_2, ..., c_n$ have to be a positive common multiple of $a_1, a_2, ..., a_n$, so at least $lcm(a_1, a_2, ..., a_n)$. On the other hand, after that amount of unitary steps in the path (independently of the reflections) each coordinate x_i is a multiple of a_i and hence we are in a corner.

Let $I = \{1, ..., n\}$ and for every non-empty subset $J \subseteq I$ write $lcm(a_J)$ for the least common multiple of the numbers a_i with $i \in J$.

Theorem 2. Let us call $x_1, x_2, ..., x_n$, the (positive and integer) variables, and let $a_1, a_2, ..., a_n$, their maximal value. The total amount of bouncing points in the n-dimensional arithmetic billiard is:

$$\operatorname{lcm}(a_I) \cdot \sum_{J \subseteq I, J \neq \emptyset} (-1)^{\#J+1} \frac{1}{\operatorname{lcm}(a_J)}$$

Proof. The number of bouncing points on the faces $x_i = 0$ or $x_i = a_i$ equals $\frac{\operatorname{lcm}(a_1, a_2, \dots, a_n)}{a_i}$. Similarly, on an edge $x_i = 0$ or $x_i = a_i$ for all $i \in J$, where J is a non-empty subset of $\{1, \dots, n\}$, equals $\frac{\operatorname{lcm}(a_I)}{\operatorname{lcm}(a_J)}$. This formula is then obtained by the inclusion-exclusion principle while counting the bouncing points on the faces (we have to keep track of points which are bouncing points for several faces simultaneously). \Box

Open questions

For an *n*-th dimensional billiard with the path starting at the point (0, ..., 0) and each coordinate increasing or decreasing by one at each step:

- In which corner does the ball land? This question is probably clarified by considering the highest power of 2 dividing the numbers a_i .
- How many intersection points does the path have? Many examples need to be investigate to formulate a conjecture.

In general, what happens if the starting point is not (0, ..., 0) but another point in the arithmetic billiard?