

 $1+2+3+\dots+n=\frac{n\cdot(n+1)}{1-1}$ 2

$$(a+b)^2 = a^2 + b^2 + 2ab$$

"The area of the circle is $\pi \cdot r^2$ "

"In an equilateral triangle the sum of the distances from any interior point to the three sides is equal to the altitude of the triangle"

Fibonacci numbers:
$$F_1 = F_2 = 1$$
, $F_n = F_{n-1} + F_{n-2}$

 $F_1^2 + F_2^2 + \ldots + F_n^2 = F_n F_{n+1}$

 $1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2$

$$a^2 + b^2 = c^2$$

"The area of the square inscribed in the semicircle is $\frac{2}{5}$ times the area of the square inscribed in the circle."

 $6 < 2\pi$

 $\pi < 2 \cdot 2$

 $3 < \pi < 4$

Pentagonal and triangular numbers

