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The Principle of Mathematical Induction (PMI)

PMI Classic
Consider statements P(n) for n ∈ N. Suppose that P(0) is true
(this is the base case). Suppose that for every n ∈ N the state-
ment P(n) implies P(n+1) (this is the induction step). Then P(n)
holds true for all n ∈ N.

Exercise: Prove that for every n ∈ N the number n3 − n is a
multiple of 3.
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Visualization of PMI Classic

The PMI is usually illustrated by a row of falling dominoes:

I Consider infinitely (countably) many dominoes standing on
end, arranged in a half-line extending infinitely to the right.

I The (n + 1)th domino represents P(n).
Proving the truthfulness of P(n) means that the
corresponding domino falls to the right.
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I The base case: Push the first domino as to make it fall.
This starts the chain reaction. Without a push the
dominoes keep standing.

I The induction step: If one domino falls, then its right-hand
neighbor falls as well. This guarantees that the chain
reaction includes all dominoes in the row (eventually each
domino will fall). A missing induction step can be visualised
by a row of dominoes that at some point is not tight (there
is too much space between a domino and the next one,
and hence the chain reaction does not propagate).
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The PMI on a countable set

PMI Countably Infinite
If the set of statements is countably infinite, then it suffices to
label its elements with the natural numbers to reduce to the si-
tuation of PMI Classic.

I We are arranging the dominoes in a row.
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Examples for PMI Countably Infinite:

If we consider the set of even non-negative integers, then
typically we choose 0 as first element, 2 as second, 4 as third,
and so on (for the odd non-negative integers we would choose
1 as first element, 3 as second, 5 as third, and so on).

If we have the set of integers smaller than or equal to −5, then
it is natural to take −5 as as first element, −6 as second, −7 as
third, and so on.

If we have the set of all integers, then we can order these as
follows:

0,1,−1,2,−2,3,−3 . . .
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PMI Different Start

A special case of PMI Countably Infinite:

PMI Different Start
Let n0 ∈ N, and consider statements P(n) for n ∈ N with n > n0.
Suppose that P(n0) is true (this is the base case). Suppose that
for every n ∈ N with n > n0 the statement P(n) implies P(n + 1)
(this is the induction step). Then P(n) holds true for all n ∈ N
with n > n0.

Exercise: Prove that for all natural numbers n > 4 we have
n · (n − 1) · · · 2 · 1 > 2n.
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Visualization of PMI Different Start

I Think of a row of dominoes indexed by N (by considering
some additional statements), and push the domino
corresponding to n0: the first dominoes stay untouched,
the others will fall.

I Ignore the first dominoes: these could either fall if pushed
(true statements) or they are fixed (false statements).
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PMI Finite

PMI Finite
Let S be a non-empty finite set, and consider statements P(s)
for s ∈ S. We label the elements of S with the natural numbers
from 0 to c − 1, where c is the cardinality of S. Suppose that
P(0) is true (this is the base case). Suppose that for every n ∈ N
with 0 6 n < c − 1 the statement P(n) implies P(n + 1) (this is
the induction step). Then P(s) holds true for all s ∈ S.

Exercise: Prove that for all integers n in the range from 20 to
50 the binomial coefficient

( 30
n−20

)
is strictly positive.
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I Visually, the row of dominoes is finite: after finitely many
steps all dominoes have fallen and the chain reaction
stops.

Further variants of the PMI can be combined with PMI
Countably Infinite or PMI Finite.
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The complete mathematical induction

PMI Complete

Consider statements P(n) for n ∈ N. Suppose that P(0) is true
(this is the base case). Suppose that for every n ∈ N the col-
lection of statements P(0) to P(n) implies P(n + 1) (this is the
induction step). Then P(n) holds true for all n ∈ N.

The induction step is easier to prove because we can make use
of any statement from P(0) to P(n). Often we only need a fixed
amount of previous statements, for example P(n) and P(n − 1).

Further variants of the PMI can be combined with PMI
Complete.
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Visualization of PMI Complete

I Consider dominoes of growing size. The induction step
means that the first dominoes together have enough elain
to make the next domino fall.

Exercise: Prove that the n-th Fibonacci number equals

1√
5

[(1 +
√

5
2

)n
−
(1−

√
5

2

)n]
.
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The backwards mathematical induction

PMI Backwards
Consider statements P(n) for n ∈ N. Suppose that P(n) is true
for all n ∈ S, where S is an infinite subset of N (this is an infinite
set of base cases). Suppose that for every n ∈ N with n > 0 the
statement P(n) implies P(n − 1) (this is the backward induction
step). Then P(n) holds true for all n ∈ N.

We are doing infinitely many applications of PMI Finite (each
statement is proven multiple times).
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Visualization of PMI Backwards

I Push to the left all dominoes corresponding to the
elements of S: the chain reaction propagates to the left.

Exercise: Let n ∈ N with n > 1. Prove the inequality between
arithmetic and geometric mean of n strictly positive real
numbers:

a1 + a2 + ...+ an

n
> n
√

a1a2...an .

(Hint: Prove the inequality by induction for all n that are powers
of 2.)
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Two-dimensional induction

PMI Two-dimensional
Consider statements P(a,b) for a,b ∈ N. Suppose that P(0,0)
is true (this is the base case). Suppose that, if P(a,0) is true for
some a ∈ N, then P(a+1,0) is also true (this is the first induction
step). Suppose that, if P(a,b) is true for some a,b ∈ N, then
P(a,b + 1) is also true (this is the second induction step). Then
P(a,b) holds true for every a,b ∈ N.

With the base case and the first induction step one proves
P(a,0) for all a ∈ N (PMI Classic). The second induction step
then allows to prove P(a,b) for any fixed a and for any b ∈ N
(infinitely many PMI Classic).

15



PMI Two-dimensional generalizes to finitely many variables.

Exercise: Consider a function f (a,b) of two strictly positive
integer variables that satisfies f (1,1) = 2 and such that for
every a,b the following holds:

f (a + 1,b) = f (a,b) + 2(a + b)

f (a,b + 1) = f (a,b) + 2(a + b − 1) .

Prove that for every a,b we have

f (a,b) = (a + b)2 − (a + b)− 2b + 2 .
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Visualizing PMI Two-dimensional

I Mark the point (a,b) in the plane as soon as P(a,b) is
proven.

I Mark (0,0) because of the base case, and then the by first
induction step all points on the a-axis.

I By the second induction step the marking propagates
upwards from (a,0). It propagates to all points (a,b).
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PMI Sum of variables

PMI Sum of variables
Consider statements P(a,b) for a,b ∈ N. Suppose that P(0,0)
is true (this is the base case). Suppose that, if for some n ∈ N the
statement P(a,b) is true whenever a+b = n, then the statement
P(a,b) is true whenever a+b = n+1 (this is the induction step).
Then P(a,b) holds true for every a,b ∈ N.

Consider statements Q(n) consisting of all P(a,b) with
a + b = n, and apply PMI Classic.

18



Exercise: Prove that for all natural numbers n, k such that
k 6 n the binomial coefficient

(n
k

)
is a natural number. You can

make use of the known formula(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

(Hints: While doing the induction in one variable, apply PMI
Complete. The fact that the set of cases is a subset rather than
the whole of N2 will not matter in the proof.)

PMI Sum of variables generalizes to finitely many variables.
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Visualizing PMI Sum of variables

I The statement Q(n) corresponds to the (n + 1)th finite
diagonal of the first quadrant.

I The chain reaction propagates from one diagonal to the
next.
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The general framework for grouping statements

PMI Partition
Let S be a set, and consider statements P(s) for s ∈ S. Partition
S into countably many subsets Tn with n ∈ N. Suppose that P(s)
is true for all s ∈ T0 (this is the base case). For all n ∈ N suppose
that, if P(s) is true whenever s ∈ Tn, then P(s) is true whenever
s ∈ Tn+1 (this is the induction step). Then P(s) holds true for
every s ∈ S.

Apply PMI Classic to n.

One could consider a finite partition, and apply PMI Finite.

Exercise: For all finite subsets F of N, prove that the number of
subsets of F equals 2#F .
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Visualization of PMI Partition
I Consider domino towers (of growing size for PMI

Complete). The towers completely fall apart in the process,
i.e. all their dominoes fall.

I More generally, consider arrangements of dominoes: if all
dominoes in an arrangement fall, then all dominoes in the
next one fall.
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Larger induction step

PMI Jumps

Consider statements P(n) for n ∈ N. Let k ∈ N with k > 1.
Suppose that the statements P(0) up to P(k − 1) are true (we
have k base cases). Suppose that for every n ∈ N the statement
P(n) implies P(n + k) (in the induction step we jump k steps
ahead). Then P(n) holds true for all n ∈ N.

The set N is partitioned into k subsets, according to the
remainder after division by k . Apply k times PMI Countably
infinite.
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Visualization of PMI Jumps

I PMI Jumps with k = 2 has two inductions in its structure,
one for the even numbers and one for the odd numbers.
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I Visualize PMI Jumps with k rows of falling dominoes:
hitting the next domino in the row means jumping k steps
ahead in the usual arrangement.

25



Case distinction on the proof of the induction step

An alternative to PMI Jumps is doing a case distinction in the
proof of the induction step of PMI Classic.
For PMI Jumps with k = 2 one gets the two cases “from even to
odd” and “from odd to even”.

Exercise: Prove that for all n ∈ N we have

(−1)n =

{
1 for n even ;
−1 for n odd .

Exercise: Prove (PMI Jumps with k = 4, or four cases) the
formula for the higher derivatives of the sinus function.
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Visualization of the case distinction

I Not all dominoes fall down in the same way, the dominoes
are not aligned (here the dominoes are seen from above):
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