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When you study trigonometry, and more precisely sine and cosine, you encounter square
roots: for example, you have

sin(60◦) =

√
3

2
.

It turns out that there are pretty nice expressions for the values of sine and cosine for all
angles that are integer multiples of 3◦, see the table below [2]. Indeed, those values can
be expressed with the help of the following square roots:

√
2 ,

√
3 ,

√
5 ,

√
6 ,

√
2±
√
3 ,

√
5±
√
5 .

In the table you only find angles between 0◦ and 45◦. The reason is that, up to a sign,
you can reduce to consider the multiples of 3◦ that are between 0◦ and 90◦. Moreover, to
deal with the complementary angle, you only need to swap sine and cosine. Also notice
that from the expressions of sine and cosine we may easily deduce expressions for the
tangent and cotangent, so there was no need to write those down as well.

How did we find the expressions in the table? For 0◦ the expressions are obvious. For
45◦ and for 30◦ we may easily invoke Pythagora’s Theorem because the corresponding
right triangles are half a square and half an equilateral triangle respectively.
For 18◦ we can make use of a regular pentagon. First of all, the isosceles triangle
consisting of two diagonals and a pentagon side has apex angle 36◦.
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θ cos θ sin θ

0◦ 1 0

3◦ 2(
√
3+1)
√

5+
√
5+
√
2(
√
3−1)(

√
5−1)

16

√
2(
√
3+1)(

√
5−1)−2(

√
3−1)
√

5+
√
5

16

6◦
√
2
√

5−
√
5+
√
3(
√
5+1)

8

√
6
√

5−
√
5−(
√
5+1)

8

9◦
√
2(
√
5+1)+(

√
5−1)
√

5+
√
5

8

√
2(
√
5+1)−(

√
5−1)
√

5+
√
5

8

12◦
√
6
√

5+
√
5+
√
5−1

8

√
2
√

5+
√
5−
√
3(
√
5−1)

8

15◦
√

2+
√
3

2

√
2−
√
3

2

18◦
√
2
√

5+
√
5

4

√
5−1
4

21◦ 2(
√
3−1)
√

5−
√
5+
√
2(
√
3+1)(

√
5+1)

16

2(
√
3+1)
√

5−
√
5−
√
2(
√
3−1)(

√
5+1)

16

24◦
√
5+1+

√
6
√

5−
√
5

8

√
3(
√
5+1)−

√
2
√

5−
√
5

8

27◦ 2
√

5+
√
5+
√
2(
√
5−1)

8

2
√

5+
√
5−
√
2(
√
5−1)

8

30◦
√
3
2

1
2

33◦ 2(
√
3+1)
√

5+
√
5−
√
2(
√
3−1)(

√
5−1)

16

2(
√
3−1)
√

5+
√
5+
√
2(
√
3+1)(

√
5−1)

16

36◦
√
5+1
4

√
2
√

5−
√
5

4

39◦
√
2(
√
3−1)(

√
5+1)+2(

√
3+1)
√

5−
√
5

16

√
2(
√
3+1)(

√
5+1)−2(

√
3−1)
√

5−
√
5

16

42◦
√
2
√

5+
√
5+
√
3(
√
5−1)

8

√
6
√

5+
√
5−(
√
5−1)

8

45◦
√
2
2

√
2
2

By halving this isosceles triangle through the apex, we find the right triangle that we
need. It then suffices to recall that the ratio between diagonal and side of a regular
pentagon is the golden ratio [1]

ϕ =
1 +
√
5

2
,

whose inverse equals
√
5−1
2

. We leave the conclusion of the calculation of cos(18◦) as an
exercise: the value of sin(18◦) then follows from the identity sin2(18◦)+cos2(18◦) = 1.
All other values in the table can be deduced with the help of the fundamental identity
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cos2 x+ sin2 x = 1, and trigonometric rules such as the addition/subtraction formulas

sin(x± y) = sinx · cos y ± cosx · sin y cos(x± y) = cos x · cos y ∓ sinx · sin y ,

the duplication formulas

sin(2x) = 2 sinx · cosx cos(2x) = 2 cos2 x− 1 ,

and the half-angle formulas

sin2 x

2
=

1− cosx

2
cos2

x

2
=

1 + cos x

2
.

You can find different (but equivalent) expressions for sine and cosine, according to
which trigonometric formula you use and how you simplify an expression. Sometimes
choosing the “simplest” expression is really a matter of personal preference: which of
the following three expressions

(−1 +
√
5)
√
5 +
√
5 +
√
2 +
√
10

8
;

1

2

√√√√
2 +

√
5 +
√
5

2
;

√
2(
√
5 + 1) + (

√
5− 1)

√
5 +
√
5

8

would you choose to express the cosine of 9◦?

Disclaimer: For most angles you cannot write down an exact expression for the values
of sine and cosine. For example, you would keep cos(1◦) in your calculations and, if
needed, you can use an approximated value for it. In fact, for multiples of 1◦ which
are not multiples of 3◦ there is no exact expression for the values of sine and cosine
involving real radicals (it is necessary to make use of the complex numbers). To know
more about such results you can have a look at [3].

Exercises
1. Compute with geometrical methods the exact values of sine and cosine for 45◦,

30◦, and 18◦.

2. Show (without doing the actual calculations) that it is possible to compute the
values of sine and cosine for all integer multiples of 3◦.

3. Compute the exact values of sine and cosine for 3◦.

4. Prove that if an angle can be expressed with real radicals, then the same holds for
its half. In particular this shows that there are infinitely many angles that can be
expressed with real radicals.
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Solutions to the exercises
1. Compute with geometrical methods the exact values of sine and cosine for 45◦,

30◦, and 18◦.

45◦: The corresponding right triangle is half a square. The two legs are equal so
(from Pythagora’s Theorem) the hypotenuse is

√
2 times the leg. Thus sine and

cosine of 45◦ are 1√
2
=
√
2
2

.

30◦: The corresponding right triangle is half an equilateral triangle. The short leg
is half the hypotenuse, and we deduce that sin(30◦) = 1

2
. By Pythagoras’ Theo-

rem, the ratio between the long leg and the hypotenuse is
√
3
2

, so this is the value
of cos(30◦).

18◦: As we have noticed, the corresponding right triangle is half the isosceles
triangle consisting of two diagonals and one side of a regular pentagon. The
hypotenuse is a diagonal, and the short leg is half of the pentagon side. Recall
that the ratio between diagonal and side of a regular pentagon is the golden ratio

ϕ =
1 +
√
5

2
,

whose inverse is
√
5−1
2

. We deduce that the ratio between half a side and the
diagonal of a regular pentagon is

√
5−1
4

: this is the value of cos(18◦). We then
have

sin(18◦) =
√

1− cos2(18◦) =

√
2
√
5 +
√
5

4
.

2. Show (without doing the actual calculations) that it is possible to compute the
values of sine and cosine for all integer multiples of 3◦.

In Exercise 1 we have already worked out 45◦, 30◦ (and hence also the comple-
mentary angle 60◦), and 18◦. We may then apply the appropriate trigonometric
formulas considering the following relations:

36◦ = 2× 18◦ 6◦ = 36◦ − 30◦ 15◦ = 60◦ − 45◦ 3◦ = 18◦ − 15◦

9◦ = 15◦ − 6◦ 12◦ = 2× 6◦ 21◦ = 9◦ + 12◦ 24◦ = 2× 12◦

27◦ = 12◦ + 15◦ 33◦ = 15◦ + 18◦ 39◦ = 18◦ + 21◦ 42◦ = 45◦ − 3◦
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3. Compute the exact values of sine and cosine for 3◦.

In Exercise 1 we have computed sine and cosine for 30◦ and 18◦. By the half-angle
formulas we have

cos(15◦) =

√
1 + cos(30◦)

2
=

√
2 +
√
3

2

and

sin(15◦) =

√
1− cos(30◦)

2
=

√
2−
√
3

2
.

Using the subtraction formulas we get

cos(3◦) = cos(18◦ − 15◦) = cos(18◦) cos(15◦) + sin(18◦) sin(15◦)

=
2(
√
3 + 1)

√
5 +
√
5 +
√
2(
√
3− 1)(

√
5− 1)

16

and

sin(3◦) = sin(18◦ − 15◦) = sin(18◦) cos(15◦)− cos(18◦) sin(15◦)

=

√
2(
√
3 + 1)(

√
5− 1)− 2(

√
3− 1)

√
5 +
√
5

16
.

4. Prove that if an angle can be expressed with real radicals then the same holds for
its half. In particular this shows that there are infinitely many angles that can be
expressed with real radicals.

This easily follows from the half-angle formulas.
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