
Every number is the beginning of a power of 2

I do not know when you were born, but I am sure that your birthyear is the beginning
of a power of 2. I do not know exactly how many grains of sand there are in the sea,
but this number is surely the beginning of a power of 2. Given any natural number, I
know that this number is the beginning of a power of 2 (and in fact it is the beginning of
infinitely many powers of 2).
For example, consider the number 123. The power 290 starts with the digits 123:

290 = 1237940039285380274899124224 .

You may check with a computer that the powers 2379, 2575, 2864 also start with the digits
123, and I claim that there are infinitely many powers of 2 with this property!

Given any natural number A, we prove that there is a power of 2 starting with the digits
of A (as a small challenge adapt the proof and see that there are infinitely many powers
of 2 with this property). We have to find some power 2n such that for some integer
number k > 0 we have

A · 10k 6 2n < (A+ 1)10k .
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Indeed, this ensures that the first digits of 2n are those of A, and then there are k further
digits which can be arbitrary. This condition can be rewritten using decimal logarithms:

log(A) + k 6 n log(2) < log(A+ 1) + k .

Now plug in the floor function1 and the fractional part2 of the above numbers:

blog(A)c+{log(A)}+k 6 bn log(2)c+{n log(2)} < blog(A+1)c+{log(A+1)}+k .

I leave you to deal with the easy case where A + 1 is a power of 10, so we can assume
that log(A) and log(A+ 1) have the same floor function. Moreover, let’s choose

k = bn log(2)c − blog(A)c
(notice that, provided that n is sufficiently large, k will be a positive integer). The
inequalities then simplify a lot: to solve our problem it then suffices to find some suffi-
ciently large n such that we have

{log(A)} 6 {n log(2)} < {log(A+ 1)} .
Let’s look at what we have here. The number X = log(2) is an irrational number3. The
numbers a = {log(A)} and b = {log(A+ 1)} satisfy 0 6 a < b < 1 (notice that a < b
because log(A) < log(A+1) and by assumption these two numbers have the same floor
function). So it suffices that we prove the following fact:

Given an irrational number X , and two numbers a, b satisfying 0 6 a < b 6 1, there
are infinitely many natural numbers n satisfying

a 6 {nX} < b .

Since X is irrational, you may easily verify that the numbers {nX} are distinct for
different values of n4. Now partition the interval [0, 1] into intervals of some length less
than b− a. It is pretty intuitive (and it follows from the so-called pigeonhole principle)
that there is an interval that contains at least two numbers {n1X} and {n2X}, and we
may suppose that the former is less than the latter. So we have

{(n2 − n1)X} = {n2X} − {n1X} < b− a .

1If x is a real number, then we write bxc for the floor function, which gives the largest integer which
is less than or equal to x: for example bπc = 3, b7c = 7, b−πc = −4.

2If x is a real number, then we define the fractional part {x} of x as the difference between x and its
floor function. This is a number greater than or equal to 0 and strictly less than 1, for example we have:
{π} = 0.14 . . .; {7} = 0; {−π} = 0.85 . . ..

3With the Fundamental Theorem of Arithmetic it is not difficult to prove the following fact: If the
decimal logarithm of a natural number is rational, then the number must be a power of 10.

4Hint: If {nX} = {mX} with n 6= m, then X = (bnXc − bmXc)/(n−m).
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a b{n1X} {n2X}{(n2 − n1)X}

Then it is not difficult to show that in each of the given intervals there are infinitely
many numbers of the form {M(n2 − n1)X}, where M > 1 is an integer5. If n2 − n1 is
also positive, then we are done. Else notice that {M(n2 − n1)X} is non-zero because
X is irrational, and hence

{−M(n2 − n1)X} = 1− {M(n2 − n1)X} .

We deduce that each of the given intervals contains also infinitely many numbers of
the form {−M(n2 − n1)X}, and we conclude because −M(n2 − n1) is positive. This
completes the proof!

Finally, some mathematical challenges: Can you generalize the problem addressed in
this article by replacing 2 by any integer greater than 1 which is not a power of 10? Can
you generalize the problem also to numeral bases other than 10?
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5If we subdivide the interval [0, 1] into N intervals of length 1
N and if 0 < ` < 1

N is irrational, then
in any of the intervals there are infinitely many numbers of the form {M`}, where M > 1 is an integer.
Recall that these fractional parts are all distinct because ` is irrational. By taking the fractional parts of
`, 2`, 3`, . . . we enter each of the intervals (possibly more than once), and for every positive integer a we
can start all over again with t`, (t + 1)`, . . ., where t` is the smallest multiple of ` which is greater than
a, for which we must have 0 < {t`} < 1

N .
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