Every number is the beginning of a power of 2

I do not know when you were born, but I am sure that your birthyear is the beginning
of a power of 2. I do not know exactly how many grains of sand there are in the sea,
but this number is surely the beginning of a power of 2. Given any natural number, 1
know that this number is the beginning of a power of 2 (and in fact it is the beginning of
infinitely many powers of 2).

For example, consider the number 123. The power 2%° starts with the digits 123:

290 — 1237940039285380274899124224 .

You may check with a computer that the powers 237, 25752864 a]50o start with the digits
123, and I claim that there are infinitely many powers of 2 with this property!

Given any natural number A, we prove that there is a power of 2 starting with the digits
of A (as a small challenge adapt the proof and see that there are infinitely many powers
of 2 with this property). We have to find some power 2" such that for some integer
number k£ > 0 we have

A-10F < 2" < (A4 1)10F.
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Indeed, this ensures that the first digits of 2" are those of A, and then there are k further
digits which can be arbitrary. This condition can be rewritten using decimal logarithms:

log(A) + k < nlog(2) <log(A+1)+k.
Now plug in the floor function' and the fractional part> of the above numbers:
[log(A)] +{log(A)}+k < [nlog(2)] +{nlog(2)} < [log(A+1)|+{log(A+1)}+k.

I leave you to deal with the easy case where A + 1 is a power of 10, so we can assume
that log(A) and log(A + 1) have the same floor function. Moreover, let’s choose

k= [nlog(2)] — [log(A)]

(notice that, provided that n is sufficiently large, k£ will be a positive integer). The
inequalities then simplify a lot: to solve our problem it then suffices to find some suffi-
ciently large n such that we have

{log(A)} < {nlog(2)} < {log(A+1)}.

Let’s look at what we have here. The number X = log(2) is an irrational number?. The
numbers a = {log(A)} and b = {log(A + 1)} satisfy 0 < a < b < 1 (notice that a < b
because log(A) < log(A+ 1) and by assumption these two numbers have the same floor
function). So it suffices that we prove the following fact:

Given an irrational number X, and two numbers a, b satisfying 0 < a < b < 1, there
are infinitely many natural numbers n satisfying

a<{nX}<b.

Since X is irrational, you may easily verify that the numbers {nX} are distinct for
different values of n*. Now partition the interval [0, 1] into intervals of some length less
than b — a. It is pretty intuitive (and it follows from the so-called pigeonhole principle)
that there is an interval that contains at least two numbers {n; X } and {n, X}, and we
may suppose that the former is less than the latter. So we have

{(ng —n1) X} ={n X} —{mX}<b—a.

'If = is a real number, then we write | 2| for the floor function, which gives the largest integer which
is less than or equal to z: for example |7] =3, |7] =7, |—7] = —4.

%If 7 is a real number, then we define the fractional part {x'} of z as the difference between z and its
floor function. This is a number greater than or equal to 0 and strictly less than 1, for example we have:
{r}=014.. {7} =0;{-7} =0.85....

3With the Fundamental Theorem of Arithmetic it is not difficult to prove the following fact: If the
decimal logarithm of a natural number is rational, then the number must be a power of 10.

“Hint: If {nX} = {mX} withn # m, then X = (|[nX| — [mX])/(n —m).
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Then it is not difficult to show that in each of the given intervals there are infinitely
many numbers of the form {M (ny — ny) X}, where M > 11is an integer”. If ny — ny is
also positive, then we are done. Else notice that {M (ny — ny) X} is non-zero because
X is irrational, and hence

{-M(ny —n1) X} =1—{M(ny—nq1)X}.

We deduce that each of the given intervals contains also infinitely many numbers of
the form {—M (ny — n1) X}, and we conclude because —M (ny — nq) is positive. This
completes the proof!

Finally, some mathematical challenges: Can you generalize the problem addressed in
this article by replacing 2 by any integer greater than 1 which is not a power of 10? Can
you generalize the problem also to numeral bases other than 10?
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