MATH AROUND THE CLOCK

ANTONELLA PERUCCA

The numbers 1 to 12 written using only π , the basic arithmetic operations and the floor/ceiling functions.

There are infinitely many possibilities for expressing a number! Pupils can invent their personal mathematical clock by writing 1 to 12 in their favourite way...

In the table below we present original mathematical clocks that revolve around a specific theme:

- **Digit-Theme:** One can fix any decimal digit from 1 to 9 and then display all integers 1 to 12 with short expressions involving only that digit and some arithmetic operations. We use the basic arithmetic operations, taking powers, and taking the square-root (notice that with the digits 5,6,7 we only use the basic arithmetic operations). It is also possible to use the digit 0, by applying the factorial identity 0! = 1.
- π -Theme: It is possible to write all integers from 1 to 12 using only π , the basic arithmetic operations and the floor/ceiling functions | | and [].
- *e*-Theme: It is possible to write all integers from 1 to 12 using only Euler's number *e*, the basic arithmetic operations, taking powers, taking the square-root, and applying the floor/ceiling functions.

• 123-**Theme:** It is possible to write all integers from 1 to 12 using only the digits 1,2,3 exactly once and in this order. This involves the basic arithmetic operations, taking powers, taking the square-root, taking the factorial, and applying the floor function. For this theme, we got inspired from [1].

It is also possible to write the integers from 1 to 12 using any given real number. Indeed, we can always find a short expression for the number 1: for a positive real number which is at most 1, it suffices to take the ceiling function to produce 1; for any real number x greater than 1, we can write 1 as the floor function of $\sqrt[x]{x} = e^{\frac{\log x}{x}}$; negative numbers may be turned positive with the absolute value; for zero we may use its factorial and write 0! = 1.

Favoring some mathematical expressions over others is a also a matter of personal preference. For example, which of the following expressions

$$2+2$$
 $2\cdot 2$ 2^2

would you choose for the number 4? Of course, one may look for a simple expression or purposely opt for a complicated one: for example, with Euler's identity [3] we can write

$$1 = -e^{\pi i}$$

or, considering the Basel problem [2], we could write

$$6 = \left(\sum_{n=1}^{\infty} \frac{1}{(\pi n)^2}\right)^{-1}$$

Sequences are also a source of inspiration: If n is an integer from 1 to 12, we can write n as $\sqrt{n^2}$ or as $\log_2(2^n)$, for example we can write

$$12 = \sqrt{144} = \log_2(4096)$$
.

Some mathematical clocks go as far as displaying the first twelve terms of a known sequence (e.g. the Fibonacci sequence), leaving implicit how to make the connection to the integers from 1 to 12: this is analogous to writing *December* to convey the number 12. Another common choice is writing down an equation such that the desired number is the only solution, for example conveying 12 with

$$x^2 + 160 = 24x + 16.$$

Notice that some mathematical clocks show equations with more than one solution, but with exactly one solution among the integers from 1 to 12. In general, beware of mathematical inaccuracies, for example 3 is not really $\pi - 0.14$. Nevertheless, everything is allowed to have fun playing with numbers!

Practical tips: There are cheap whiteboard clocks where one can freely write on the clock dial. Alternatively, if one has produced their own mathematical clock, say as a round image, one can use that as clock dial (for example through companies that allow you to pick your own photo).

References

- [1] The Math Clock 1-2-3 Edition, Math Clocks & Other Interesting Clocks, http://www.sbcrafts.net/clocks/.
- [2] P. J. Nahin, Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press, 2006, 416p.
- [3] C. J. Sangwin, An infinite series of surprises, Plus Magazine, 1 December 2001, https://plus.maths.org/content/infinite-series-surprises.

MATH AROUND THE CLOCK

12	11 + 1	$2^{2^2} - 2^2$	$3 \cdot 3 + 3$	$4^{\sqrt{4}} - 4$	$\frac{5 \cdot 5 \cdot 5 - 5}{5 + 5}$	9 + 9	$\frac{L}{L+LL}$	$\frac{8(8\cdot8+8\cdot8-8)}{88-8}$	$9 + \sqrt{9}$	$[\pi] \cdot [\pi]$	$\left\lfloor e^{e}-e ight ceil$	$1! \cdot 2! \cdot 3!$
11	11	$\frac{2^2+2^2+2}{2}$	$\frac{(3+3)(3+3)-3}{3}$	$\frac{44}{4}$	5 <u>7</u> 57	<u>66</u>	<u>17</u>	8 <u>8</u> 88	<u>66</u>	$\left[\frac{\pi^{\pi}}{\pi}\right]$	$\left\lfloor \frac{e^e}{\sqrt{e}} + e \right\rfloor$	$-1+2\cdot 3!$
10	11 - 1	$2(2^2 + \frac{2}{2})$	$\frac{3^3+3}{3}$	$(4+\frac{4}{4})\sqrt{4}$	5 + 5	$\frac{66-6}{6}$	$\frac{L}{L-LL}$	$\sqrt{\frac{888-88}{8}}$	$\frac{6}{6-66}$	$\left[\pi\cdot\pi+\frac{\pi}{\pi\cdot\pi} ight]$	$\left[e\cdot e+e\right]$	$\lfloor 12 - \sqrt{3} \rfloor$
6	$rac{111-11-1}{11}$	$(2+\tfrac{2}{2})^2$	3 · 3	$(4-rac{4}{4})^{\sqrt{4}}$	$\frac{5\cdot 5+5\cdot 5-5}{5}$	$\frac{9+9}{9+9}$	$\frac{L+T}{T+T+T}$	$8 + \frac{8}{8}$	6	$\left[\pi\cdot\pi ight]$	$\lfloor \frac{e^e}{\sqrt{e}} \rfloor$	$1 + 2^{3}$
8	$\frac{(11\!+\!1)(1\!+\!1)}{1\!+\!1\!+\!1}$	$2\cdot 2^2$	$\frac{33-\frac{3}{3}}{3+\frac{3}{3}}$	4 + 4	$\frac{\overline{55+5\cdot5}}{\overline{5+5}}$	$\frac{9+9}{9+9\cdot 9-9}$	$7 + \frac{7}{7}$	8	$\frac{6}{6} + \frac{6}{6}$	$\left[\pi\cdot\pi-\sqrt{\pi} ight]$	$\left\lfloor e \cdot e \right\rfloor$	$1\cdot 2^3$
7	$\sqrt{\frac{111 - 11}{1 + 1} - 1}$	$2^2 + 2 + \frac{2}{2}$	$\frac{3^3 + \frac{3}{33}}{3 + \frac{3}{3}}$	$\frac{44-4\cdot4}{4}$	$\frac{5 \cdot 5 + 5 + 5}{5}$	$6 + \frac{6}{6}$	7	8 - 8 8	$\frac{9\sqrt{9}+\frac{9}{9}}{\sqrt{9}+\frac{9}{9}}$	$\lfloor \pi^{\sqrt{\pi}} \rfloor$	$\lfloor e \cdot e \rfloor$	$1+2\cdot 3$
6	$\frac{11+1}{1+1}$	$2^{2} + 2$	3 + 3	$\frac{44+4}{4+4}$	$5 + \frac{5}{35}$	9	$\frac{L}{L-L\cdot L}$	$\sqrt{\frac{8\cdot8+8\cdot8+8\cdot8+8+8}{\sqrt{8+8}}}$	$9-\sqrt{9}$	$[\pi + \pi]$	$\left\lfloor \frac{e^{e}}{e} \right\rfloor$	1 + 2 + 3
5	$\frac{11-1}{1+1}$	$2^2+rac{2}{2}$	$\frac{3^3+3}{3+3}$	$4 + \frac{4}{4}$	ŋ	$\overline{6\cdot 6-6}$	$\frac{2+2}{2-2}$	$\frac{8\cdot8+8\cdot8-88}{8}$	$\frac{9\sqrt{9}+\sqrt{9}}{9-\sqrt{9}}$	$\left[\pi\sqrt{\pi}\right]$	$\left[e+e\right]$	$1 \cdot 2 + 3$
4	$(1+1)^{1+1}$	$2\cdot 2$	$\frac{3\cdot 3+3}{3}$	4	$\frac{5\cdot 5-5}{5}$	$\tfrac{9 \cdot 9 + 9 \cdot 9}{9 + 9 + 9}$	$\frac{L}{L - LL}$	$\sqrt{8+8}$	$\sqrt{9} + \frac{9}{9}$	[#]	$e\sqrt{e}$	$1^{2} + 3$
3	$\sqrt{11-1-1}$	$2+rac{2}{2}$	c,	$\frac{4\cdot 4-4}{4}$	$\frac{5 \cdot 5 + 5}{5 + 5}$	$\frac{6.6}{6+6}$	$\frac{77-7.7}{77-7.7}$	$\frac{88-8\cdot 8}{8}$	$\sqrt{9}$	[#]	e	$(-1+2)\cdot 3$
2	1 + 1	2	$3 - \frac{3}{3}$	$\sqrt{4}$	$\frac{5+5}{5}$	$\tfrac{6.6}{6+6+6}$	$\frac{2-7.7}{7+77}$	$\sqrt{\sqrt{8+8}}$	$\frac{6}{6 \cdot 6 - 66}$	$\lceil \sqrt{\pi} \rceil$	$\left\lceil e - \frac{e}{e} \right\rceil$	1 - 2 + 3
1	1	2^{2-2}	3^{3-3}	4-4	വവ	99	7	$\tfrac{88-8\cdot8}{8+8+8}$	ଚାଚ	$\lfloor \sqrt[\pi]{\pi} \rfloor$	$\lceil e^{-e} \rceil$	$\frac{1+2}{3}$
	1 - Theme	2- Theme	3 - Theme	4 - Theme	5 - Theme	6 - Theme	7 - Theme	8– Theme	9 - Theme	π – Theme	e- Theme	123 - Theme

3